The Cascode Amplifier

- A two transistor amplifier used to obtain simultaneously:
	- 1. Reasonably high input impedance.
	- 2. Reasonable voltage gain.
	- 3. Wide bandwidth.
- None of the conventional single transistor designs will satisfy all of the criteria above.
- The cascode amplifier will satisfy all of these criteria.
- A cascode is a CE Stage cascaded with a CB Stage.

(**Historical Note:** the cascode amplifier was a cascade of *grounded cathode* and *grounded grid* vacuum tube stages – hence the name "cascode," which has remained in modern terminology.)

Comments:

- 1. $R_{_I},$ $R_{_2},$ $R_{_3},$ and $R_{_C}$ set the bias levels for both Q1 and Q2.
- 2. Determine $R_{_E}$ for the desired voltage gain.

at all operating frequencies f $>$ f $_{min}$. 3. $C_{_{in}}$ and $C_{_{byp}}$ are to act as "open circuits" at dc and act as "short circuits"

Cascode Mid-Band Small Signal Model

Cascode Small Signal Analysis

 $r_{\pi 1} = r_{\pi 2} = r_{\pi}$

1. Show reduction in Miller effect

2. Evaluate small-signal voltage gain

OBSERVATIONS

a. The emitter current of the CB Stage is the collector current of the CE Stage. (This also holds for the dc bias current.)

 $i_{el} = i_{c2}$

b. The base current of the CB Stage is:

$$
i_{bl} = \frac{i_{el}}{\beta + 1} = \frac{i_{c2}}{\beta + 1}
$$

c. Hence, both stages have about same $\mathsf{collector}$ current $\left. \begin{matrix} i_{cI} \!\approx\! l_{c2} \!\; \text{and} \!\; \text{same} \!\; g_{_{m\!f}}^{}, \, r_{_{\!\!f\!f}}^{}, \end{matrix} \right|$ $\approx i_{c2}$

Cascode Small Signal Analysis cont.

The input resistance $R_{_{inI}}$ to the CB Stage is $\overline{}$ the small-signal " *r e1* $\frac{i_{c1}}{2}$ v_o the small-signal " r_o " for the CB Stage, i.e.

$$
i_{bl} = \frac{i_{el}}{\beta + 1} = \frac{i_{c2}}{\beta + 1}
$$

The CE output voltage, the voltage drop from Q2 collector to ground, is:

$$
v_{c2} = v_{el} = -r_{\pi} i_{bl} = -\frac{r_{\pi}}{\beta + 1} i_{c2} = -\frac{r_{\pi}}{\beta + 1} i_{el}
$$

herefore, the CB Stage input resistance is:

$$
R_{inI} = \frac{v_{el}}{-i_{el}} = \frac{r_{\pi}}{\beta + 1} = r_{el}
$$

$$
A_{vCE-Stage} = \frac{v_{c2}}{v_s} \approx -\frac{R_{in1}}{R_E} = -\frac{r_e}{R_E} < 1 \implies C_{eq} = (1 + \frac{r_e}{R_E})C_{\mu} < 2C_{\mu}
$$

Cascode Small Signal Analysis - cont.

 i_{b2} \approx *v s* R_{S} || R_{B} + r_{π} + (β + 1) R_{E} $i_{c2} = \beta i_{b2}$ \approx $\beta\, {\nu}_{_S}$ R_{S} || R_{B} + r_{π} +(β +1) R_{E} \approx β $\nu_{_S}$ $(\beta+1)R_{\overline{E}}$ Now, find the CE collector current in terms of the input voltage $v_s^{}$: for bias insensitivity: $(\beta + 1)R_E \gg R_S \| R_B + r_{\pi}$ $\textsf{Recall} \, \, i_{\scriptscriptstyle cl} \! \approx \! i_{\scriptscriptstyle c2}$ OBSERVATIONS: 1. Voltage gain $A_{_{\mathrm{v}}}$ is about the same as a stand-along CE Amplifier. 2. HF cutoff is much higher then a CE Amplifier due to the reduced $C_{_{eq}}$. *v s* $A_{\rm \scriptscriptstyle V}$ *vovs*and the control of the control of *RCRE* v_{bel} h_{θ} ² *g m* θ_{b} ^l *g mv* v_{be2} 2 \mathcal{B}_{m} ^V_{b2}² v_{be1} $R_{\,S}$ $i_{\rm \scriptscriptstyle cl}$ \approx i $_{el}$ $=i_{c2}$ \approx i $_{e2}$ *Rin* $n\,1$ \approx *r e1* $i_{\rm\scriptscriptstyle cl}$ $i_{\scriptscriptstyle{bl}}$ i_{el} *g mvbe1g mvbe2* i_{e2} *i* i_{ν} \rightarrow i_{b2} \downarrow $c2$ i_{C2} \approx *v s* $R_{\overline{E}}$ *v o* - $-i_{c2} R_c$

Cascode Biasing

$$
\alpha_2 I_{E2} = I_{C2} = I_{El} = \frac{1}{\alpha_1} I_{Cl} \Rightarrow I_{Cl} \approx I_{E2}
$$

reduce $R_{in} = r_e = V_T / I_{El}$ to push out HF 1. Choose $I_{\!\stackrel{}{E} I}$ – make it relatively large to break frequencies.

2. Choose R_C for suitable voltage swing $V_{C I}^{}$ and $R_{\overline{E}}$ for desired gain.

3. Choose bias resistor string such that its current *I 1* is about 0.1 of the collector current *I C1*.

4. Given R_E , I_{E2} and $V_{BE2} = 0.7$ V calc. R_3 .

5. Need to also determine *R 1* $\& R_{2}$.

Cascode Biasing - cont.

Since the CE-Stage gain is very small: a. The collector swing of Q2 will be small. b. The Q2 collector bias *V C2* $= V_{B1}$ *- 0.7 V*. 6. Set $V_{BI} - V_{B2} = 1$ $V \Rightarrow V_{CE2} = 1$ V

This will limit $\mathscr{V}_{\mathit{CB2}}^$ which will keep Q2 forward active. V _{*CB2*} $=$ *V* $_{CE2}$ $-V$ _{*BE2*} $= 0.3 V$

7. Next determine *R 2*. Its drop *V R2* $= 1 V$ with the known current. $R_{\overline{2}}$ - V _{*BI*} $-V_{B2}$ \boldsymbol{I}_1

8

Cascode Biasing - cont.

$$
R_2 = \frac{V_{BI} - V_{B2}}{I_1} = \frac{1}{I_1}
$$

8. Then calculate R_3 , $R_3 = \frac{V_{B2}}{I_1}$
where $V_{B2} = 0.7V + I_E R_E$
Note: $R_1 + R_2 + R_3 = \frac{V_{CC}}{I_1}$
9. Then calculate R_1 .
 $R_1 = \frac{V_{CC}}{0.1 I} - R_2 - R_3$

 $0.1\,{I}_\mathit{C}$

$$
9\!\!
$$

Cascode Bias Summary

 $\mathsf{SPECIFIED:}\;A_{_{\mathcal{V}}},\;V_{_{CC'}}\;$ *C1* (CB collector voltage); *V* SPECIFIED: *I_E* (or *I C*) directly or indirectly through *BW*. DETERMINE: *R* and R_{3} . $\frac{1}{C'}$ $\frac{1}{E'}$ $\frac{1}{E'}$ $\frac{1}{E'}$ $\frac{R_{\it C}}{|A_{\it v}|}$ V _{*CI*} STEP1: $R_{\rm\scriptscriptstyle E}$ $R_{\rm\scriptscriptstyle C}$ - - SET: ${V}_{BI} -V_{B2} = 1 V \Rightarrow V_{CE2} = 1 V$ $I_{\rm\,C}}$ V _{*BI*} $-V_{B2}$ 1 *V* $R, \leqslant l_1$ STEP2: $R_{\overline{2}}$ - - $0.1\,I_{\rm\,C}$ \boldsymbol{I}_1 *V B1Q1* $0.7\,V+I_{\,E} \,R_{\,E}$ *Rin* V_{B2} n_1 \approx *r e1*STEP3: $R_{\overline{3}}$ - - $0.1\,I_{\rm\,C}$ \boldsymbol{I}_1 *Q2 VV*

 $I_{C2} = I_{E1} \approx I_{C1} \approx I_{E2} = I_{C1}$

$$
R_1 + R_2 + R_3 = \frac{V_{cc}}{I_1} = \frac{V_{cc}}{0.1 I_c}
$$

STEP4:
$$
R_1 = \frac{V_{cc}}{0.1 I_c} - R_2 - R_3
$$

Cascode Bias Example

11

$$
V_{B2} = 5.10^{-4} R_3 = 1.2 V
$$

\n
$$
R_3 = 2.4 k \Omega
$$

\n
$$
V_{BI} - V_{B2} = 5.10^{-4} R_2 = 1.0 V
$$

\n
$$
R_2 = 2 k \Omega
$$

\nRecall: $R_1 + R_2 + R_3 = 24 k \Omega$

 $R_1 = 24000 - 2.400 - 2000 = 19.6 k\Omega$

 $V_{cc} = 12$, $R_c = 1 k \Omega$, $V_{B2} = 1.2 V$, I_c =5*mA*, R_E =100 Ω , V_{BI} – , $R_{E} = 100 \Omega$, $V_{BI} - V_{B2} = 1.0 V$

