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Statistical Intervals

for a Single Sample

8-1 INTRODUCTION

A tolerance interval is another important type of interval estimate. For example, the
chemical product viscosity data might be assumed to be normally distributed. We might like
to calculate limits that bound 95% of the viscosity values. For a normal distribution, we know
that 95% of the distribution is in the interval

u — 1.960, b + 1.960 (8-1)

However, this is not a useful tolerance interval because the parameters p and o are unknown.
Point estimates such as X and s can be used in Equation 8-1 for p and . However, we need to
account for the potential error in each point estimate to form a tolerance interval for the
distribution. The result is an interval of the form

¥ — ks, X+ ks (8-2)

where k is an appropriate constant (that is larger than 1.96 to account for the estimation
error). As for a confidence interval, it is not certain that Equation 8-2 bounds 95% of the dis-
tribution, but the interval is constructed so that we have high confidence that it does.

Confidence and tolerance intervals bound unknown elements of a distribution. In this
chapter you will learn to appreciate the value of these intervals. A prediction interval pro-
vides bounds on one (or more) future observations from the population. For example, a
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Keep the purpose of the three types of interval estimates clear:

fifth Edition

* A confidence interval bounds population or distribution parameters (such as the mean

viscosity).
* A tolerance interval bounds a selected proportion of a distribution.

* A prediction interval bounds future observations from the population or distribution.

8-2 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL
DISTRIBUTION, VARIANCE KNOWN

8-2.1 Development of the Confidence Interval and Its Basic Properties

Suppose that X, X;, ..., X, is a random sample from a normal distribution with unknown
mean . and known variance o2, From the results of Chapter 5 we know that the sample mean
X is normally distributed with mean p. and variance o*/n. We may standardize X by sub-

tracting the mean and dividing by the standard deviation, which results in the variable

_ B
~ o/Vn

Z

The random variable Z has a standard normal distribution.

(8-3)

A confidence interval estimate for p. is an interval of the form/ = p. = u, where the end-

points [ and « are computed from the sample data. Because different samples will produce
different values of / and u, these end-points are values of random variables L and U, respec-
tively. Suppose that we can determine values of L and U such that the following probability
statement is true:

PlL=p=l}=1-a (8-4)

where 0 = o = 1. There is a probability of 1 — « of selecting a sample for which the CT will
contain the true value of p. Once we have selected the sample, so that X, = x, X; = x,, ...,
X = x,_, and computed / and u, the resulting confidence interval for p is

=i (8-5)

The end-points or bounds / and u are called the lower- and upper-confidence limits, respec-
tively, and 1 — a is called the confidence l'lll.iﬁl.'il."nl.
In our problem situation, because Z = (X — p)/(o/V/n) has a standard normal distribu-
tion, we may write
P{ Sl } =1
zﬂ,l"l = = V’E = Zaﬁ = o

— o — o
P{x—aﬂ "£W£X+zmzm}=]—u (8-6)
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Confidence
Interval on the If ¥ is the sample mean of a random sample of size n from a normal population with
Mean, ""‘L':'a""" known variance %, a 100(1 — «)% Cl on p. is given by
nown
X = Zupo/Vn = L <X + z,50/Vn (8-7)
where z, is the upper 100w/2 percentage point of the standard normal distribution.
EXAMPLE 8-1 ASTM Standard E23 defines standard test methods for notched bar impact testing of metallic materials.
Metallic Material The Charpy V-notch (CVN) technique measures impact energy and is often used to determine whether
Transition or not a material experiences a ductile-to-brittle transition with decreasing temperature. Ten measure-

ments of impact energy (/) on specimens of A238 steel cut at 60°C are as follows: 64.1, 64.7, 64.5, 64.6,
64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that impact energy is normally distributed with o = 1L
We want to find a 95% CI for p, the mean impact energy. The required quantities are 7,57 = Zggps =
1.96,n = 10, ¢ = 1, and X = 64.46. The resulting 95% CI is found from Equation 8-7 as follows:

o o

1 1
A6 = 19— = o = 6446 + 1.96—=
6446 — 1 6m{p.*6446 1 ﬁm

63.84 = p < 65.08

That is, based on the sample data, a range of highly plausible values for mean impact energy for A238
steel at 60°C is 63.84J = p, = 6508

Figure 5-1 Repeated

construction of a con- 1 2 3 4 5 6 7 8 9 10111213 14 1516
fidence interval for . Interval number

Interpreting a Confidence Interval

How does one interpret a confidence interval? In the impact energy estimation problem in
Example 8-1 the 95% Clis 63.84 = . = 65.08, so it is tempting to conclude that p is within
this interval with probability 0.95. However, with a little reflection, it’s easy to see that this can-
not be correct; the true value of . is unknown and the statement 63.84 = p = 63.08 is either
correct (true with probability 1) or incorrect (false with probability 1). The correct
interpretation lies in the realization that a CI is a random intferval because in the probability
statement defining the end-points of the interval (Equation 8-4), L and U are random variables.
Consequently, the correct interpretation of a 100(1 — @)% CI depends on the relative frequency
view of probability. Specifically, if an infinite number of random samples are collected and a
100(1 — o)% confidence interval for p is computed from each sample, 100(] — o)% of these
intervals will contain the true value of ..
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Confidence Level and Precision of Estimation

Notice in Example 8-1 that our choice of the 95% level of confidence was essentially
arbitrary. What would have happened if we had chosen a higher level of confidence, say, 99%7?
In fact, doesn’t it seem reasonable that we would want the higher level of confidence? At x =

0.01, we find z,p = zggy2 = Zogos = 2.58, while for o = 0.05, zy9ps = 1.96. Thus, the
length of the 95% confidence interval is

2(1.960/\/n) = 3.920/\/'n
whereas the length of the 99% Cl is
2(2.58¢/\Vn) = 5.160/\/n

Thus, the 99% CI is longer than the 95% CI. This is why we have a higher level of confidence
in the 99% confidence interval. Generally, for a fixed sample size n and standard deviation o,
the higher the confidence level, the longer the resulting CI.

Thus, the 99% CI is longer than the 95% CI. This is why we have a higher level of confidence
in the 99% confidence interval. Generally, for a fixed sample size » and standard deviation o,
the higher the confidence level, the longer the resulting CI.

The length of a confidence interval is a measure of the precision of estimation. From
the preceeding discussion, we see that precision is inversely related to the confidence level.
It is desirable to obtain a confidence interval that is short enough for decision-making
purposes and that also has adequate confidence. One way to achieve this is by choosing the

sample size n to be large enough to give a CI of specified length or precision with prescribed
confidence.

Ezemor= |5-pul
fe—
Figure 8-2 Errorin A
estimating . with ¥. I=%-25p0/n c: # =% +za00n
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8-2.2 Choice of Sample Size

Sample Size for
Specificd Error
on the Mean,
Variance Known

If X is used as an estimate of p, we can be 100(1 — «)% confident that the error
|# — | will not exceed a specified amount E when the sample size is

2
e (r“’;“) (8-8)

EXAMPLE 8.2
Metallic Material

Transition

One-Sided
Confidence
Bounds on the
Mean, Variance

Known
EXAMPLE 8.3
One-Sided
Confidence
Bound

To illustrate the use of this procedure, consider the CVN test described in Example 8-1, and suppose that
we wanted to determine how many specimens must be tested to ensure that the 95% CI on p for A238
stee] cut at 60°C has a length of at most 1.0J, Since the bound on error in estimation E is one-half of the
length of the CI, to determine »n we use Equation 8-8 with £ = 0.5, o = 1, and Z,» = 1.96. The
required sample size is 16

I W (o -

| and because # must be an integer, the required sample size isn = 16.

A 100(1 — )% upper-confidence bound for . is
W=u=7%+ z,0/Vn (8-9)
and a 100{1 — )% lower-confidence bound for . is

T—zo/vn=i=p (8-10)

The same data for impact testing from Example 8-1 is used to construct a lower, one-sided 95%
confidence interval for the mean impaect energy. Recall that ¥ = 6446, = 1J, and n = 10. The
interval is

- T
I_Zuﬁﬂ [

1
64.46 I.Mms n
639 = i

The lower limit for the two-sided interval in Example 8-1 was 63.84. Because z, < 2z, the lower limit
of a one-sided interval is always greater than the lower limit of a two-sided interval of equal confidence.
The one-sided interval does not bound p. from above so that it still achieves 95% confidence with a
slightly greater lower limit. If our interest is only in the lower limit for ., then the one-sided interval 1s
preferred because 1t provides equal confidence with a greater lower limit. Similarly, a one-sided upper
limit is abways less than a two-sided upper limit of equal confidence.



Engineering Statistics fifth Edition

8-3 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL
DISTRIBUTION, VARIANCE UNKNOWN

8-3.1 ¢ Distribution

1 Distribution

Let X), A3, ... . X, be a random sample from a normal distribution with unknown
mean . and unknown variance o”. The random variable

_X-p )
T—m (8-15)

has a t distribution with n — 1 degrees of freedom.

The t probability density function is

X) = Tj(Es )2 . ! -0 < x < 00 (8-16)
T =) TR + 107

where k is the number of degrees of freedom. The mean and variance of the ¢ distribution are
zero and k/(k — 2) (for k = 2), respectively.

k=10

k= [N(0, 11]

(4 i3
0 x ti_ ek =-teyp O ta,k ‘
Figure 5-4 Probability density functions of several ¢ Figure 8-5 Percentage points of the ¢
distributions. distribution.

P(Tio > togs.10) = P(Tio > 1.812) = 0.05
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8-3.2 t Confidence Interval on

It is easy to find a 100(1 — &) percent confidence interval on the mean of a normal distribu-
tion with unknown variance by proceeding essentially as we did in Section 8-2.1. We know
that the distribution of 7= (X — w)/(5/Vn) is t with n — 1 degrees of freedom. Letting
la2.n—1 be the upper 100a/2 percentage point of the ¢ distribution with n — 1 degrees of
freedom, we may write:

‘D(_"raﬂx-l = TE!&,"E‘_.H—l} =l=uo

or

X=p
P(_'raﬂ.n—l Eslf—\f{iﬂ fﬂlﬂ.ﬁ—l) =] -«

Rearranging this last equation yields

P(X = taparS/IVR= n =X+ tgnaS/V0) =1 — a (8-17)
This leads to the following definition of the 100{]1 — o) percent two-sided confidence inter-
val on .
Confidence
||“'-‘r"“} on the If ¥ and s are the mean and standard deviation of a random sample from a normal
Mean, ‘I"“r'““““ distribution with unknown variance o2, a 100(1 — «) percent confidence interval
Unknown on [.l- iS gi'-'ﬂl'l b}"

X — by IV S WST + by, 8/VR (8-18)

where tn -1 is the upper 100a/2 percentage point of the ¢ distribution with n — 1
degrees of freedom.
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One-sided confidence bounds on the mean of a normal distribution are also of interest
and are easy to find. Simply use only the appropriate lower or upper confidence limit from
Equation 8-18 and replace f,73 ;1 by fau-1-

EXAMPLE 8-5 An article in the journal Materials Engineering (1989, Vol, 11, No. 4, pp. 275-281) describes the results

Alloy Adhesion of tensile adhesion tests on 22 U-TO0 alloy specimens. The load at specimen failure 15 as follows (in
megapascals):
19.8 10.1 14.9 1.5 15.4 15.4
15.4 18.5 7.9 12.7 11.9 11.4
11.4 14.1 17.6 16.7 15.8
19.5 8.8 13.6 11.9 1.4

The sample mean is X = 13.71, and the sample standard deviation is s = 3.55. Figures 8-6 and 8-7 show
a box plot and a normal probability plot of the tensile adhesion test data, respectively. These displays
provide good support for the assumption that the population is normally distributed. We want to find
a 95% CI on p. Since n = 22, we have n — | = 2| degrees of freedom for 1, 50 fy s 5 = 2.080. The
resulting CI is
= -fq.-_:__,,_p'fﬁﬂ L=xX+ "u;h-leﬁ
13.71 — 2.080(3.55)/v22 = p. = 13.71 + 2.080(3.55)/+/22
1371 =157 = pn= 13.71 + 1.57
12.14 = p. = 1528

The CI is fairly wide because there is a lot of vanability in the tensile adhesion test measurements.
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Hormal probability plot
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Figure 8-6 Box and whisker plot for the Figure 87 Normal probability
load at failure data in Example 8-5. plot of the load at failure data from
Example 8-5.

B-4 CONFIDENCE INTERVAL ON THE VARIANCE AND
STANDARD DEVIATION OF A NORMAL DISTRIBUTION

Sometimes confidence intervals on the population variance or standard deviation are needed.
‘When the population is modeled by a normal distribution, the tests and intervals described in
this section are applicable. The following result provides the basis of constructing these con-
fidence intervals.

x" Distribution

Let Xj, A5, ..., X be a random sample from a normal distribution with mean p and
variance o, and let S be the sample variance. Then the random variable

= e 8-19

= @19

has a chi-square (x°) distribution with n — 1 degrees of freedom.
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fiix)

Figure 8-8 Proba-
bility density functions
of several x* distribu-
tions.

The probability density function of a ¥* random variable is

e, 1 -1 -x2
flx) mx‘t‘m e x>0 (8-20)

10
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The percentage points of the x? distribution are given in Table IV of the Appendix.
Define Xi.i as the percentage point or value of the chi-square random variable with k degrees

of freedom such that the probability that X exceeds this value is a.. That is,
P{.l'f{2 = Xg.t} = Jf{u]dﬂ =a

ak

This probability is shown as the shaded area in Fig. 8-9(a). To illustrate the use of Table IV,
note that the areas a are the column headings and the degrees of freedom £ are given in the left
column. Therefore, the value with 10 degrees of freedom having an area (probability) of 0.05

fix) fix)

a 0.05 0.05

0 b x 0 Xfgs 10 X805 10
=3.94 = 18.31

(a) (&)
Figure 8-9  Percentage point of the y* distribution. (a) The percentage point y2 . (b) The upper
percentage point Xj o o = 18.31 and the lower percentage point X .. o = 3.94.

to the right is xﬁm.m = 18.31.This value is often called an upper 5% point of chi-square with
10 degrees of freedom. We may write this as a probability statement as follows:

P(X2 > B os10) = P(X2 > 18.31) = 0.05

Conversely, a lower 5% point of chi-square with 10 degrees of freedom would be )3 519 =
3.94 (from Appendix A). Both of these percentage points are shown in Figure 8-9(b).
The construction of the 100(1 — )% CI for o’ is straightforward. Because
n - 1)52
XZ = %

o

is chi-square with n — | degrees of freedom, we may write

P apaa =S A S0 =1~a
so that

(n — 1)s?

This last equation can be rearranged as

1Y _ 1va?
Xaf20-1 Xi-a/2.a-1

This leads to the following definition of the confidence interval for o,

11
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Confidence
Inferval on
the Variance

If ? is the sample variance from a random sample of n observations from a normal dis-
tribution with unknown variance o, then a 100(1 — «)% confidence interval on o*is

{nzillsz =gl= M (8-21)

Xaf2n-1 Xi 201
where xﬁﬁ_,_l and xf_,_,z',_l are the upper and lower 100w/2 percentage points of
the chi-square distribution with n — 1 degrees of freedom, respectively. A confidence
interval for o has lower and upper limits that are the square roots of the correspon-
ding limits in Equation 8-21.

Itis also possible to find a 100(1 — )% lower confidence bound or upper confidence bound on o,

One-Sided
Confidence
Bounds on
the Variance

The 100(1 — @)% lower and upper confidence bounds on ¢ are

= 2 e
BN o i e (8-22)

ai—1 l—am—1

respectively.

EXAMPLE 8.6
Detergent
Filling

An automatic filling machine is used to fill bottles with liquid detergent. A random sample of 20 bottles
results in a sample variance of fill volume of s* = 0.0153 (fluid ounces)®. If the variance of fill volume
is too large, an unacceptable proportion of bottles will be under- or overfilled. We will assume that the
fill volume is approximately normally distributed. & 95% upper-confidence interval is found from
Equation 8-22 as follows:

0’2 iz E" s ]lfz
= e

or

. (19)0.0153

A . 2
TETE] 0.0287 (fluid ounce)

This last expression may be converted into a confidence interval on the standard deviation o by taking
the square root of both sides, resulting in

o= 017

Therefore, at the 95% level of confidence, the data indicate that the process standard deviation could be
as large as 0.17 fluid ounce.

12
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8-7 TOLERANCE AND PREDICTION INTERVALS

8-7.1 Prediction Interval for a Future Observation

In some problem situations, we may be interested in predicting a future observation of a
variable. This is a different problem than estimating the mean of that variable, so a confidence
interval is not appropriate. [n this section we show how to obtain a 100{1 — o)% prediction
interval on a future value of a normal random variable.

Table 8-1  The Roadmap for Constracting Confidence Intervals and Performing Hypothesis Tests,

One-Sample Case

Parameter to Be

Bounded by the

or Tested with a Interval Test

Hypothesis? Symbol  Other Parameters? Section Section Comments

Mean of normal T Standard deviation 8-2 9-2

distribution o known

Mean of arbitrary [T Sample size large 8-2.5 9-2.5 Large sample

distribution with enough that central size is often

large sample size limit theorem taken to be
applies and o is n =40
essentially known

Mean of normal w Standard deviation 8-3 9.3

distribution o unknown and
estimated

Variance (or stan- o Mean p unknown 8-4 9-4

dard deviation) of and estimated

normal distribution

Population P None 8=5 9-5

Proportion

Prediction
Interval

A 101 — «)% prediction interval on a single future observation from a normal
distribution is given by

) 1 f 1
X = bapzn-15 I+F£Xl+l =X+ tapa—154] 1 e (8-29)

EXAMPLE 8.9
Alloy Adhesion

Reconsider the tensile adhesion tests on specimens of U-T00 alloy deseribed in Example 8-5. The
load at failure for n = 22 specimens was observed, and we found that ¥ = 13.71 and s = 3.55. The
95% confidence interval on p was 12.14 = p = 15.28. We plan to test a twenty-third specimen.

13
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| A 95% prediction interval on the load at failure for this specimen is

IlI 1 1
X =ty a1+ ] +35X"+| =X+ lgpa1Fafl =
1
13.71 — (2.080)3.55 /1 + 25 =X = 1371 + (2.080)3.55, [+ %

6.16 = Xy = 21.26

| Motice that the prediction interval is considerably longer than the CL

8-7.2 Tolerance Interval for a Normal Distribution

Consider a population of semiconductor processors. Suppose that the speed of these processors
has a normal distribution with mean p = 600 megahertz and standard deviation ¢ = 30 mega-
hertz. Then the interval from 600 — 1.96(30) = 541.2 to 600 + 1.96(30) = 658.8 megahertz
captures the speed of 95% of the processors in this population because the interval from
—1.96 to 1.96 captures 95% of the area under the standard normal curve. The interval from
I — 2,020 O p + Z, 50 is called a tolerance interval.

If w and o are unknown, we can use the data from a random sample of size n to compute
X and 5, and then form the interval (X — 1.965, X + 1.965). However, because of sampling
variability in ¥ and s, it is likely that this interval will contain less than 95% of the values in
the population, The solution to this problem is to replace 1.96 by some value that will make
the proportion of the distribution contained in the interval 95% with some level of confidence.
Fortunately, it is easy to do this,

Tolerance

Interval A tolerance interval for capturing at least y% of the values in a normal distribution
with confidence level 100(1 — a)% is

X — ks, X+ ks

where k is a tolerance interval factor found in Appendix Table XII. Values are given
for y = 90%, 95%, and 99% and for 90%, 95%, and 99% confidence.

EXAMPLE 8-10 Let’s reconsider the tensile adhesion tests originally described in Example 8-5. The load at failure for

Alloy Adhesion n = 22 specimens was observed, and we found that ¥ = 13.71 and 5 = 3.55. We want to find a toler-
ance interval for the load at failure that includes 90% of the values in the population with 95% con-
fidence. From Appendix Table XII the tolerance factor &k for n = 22, y = 0.90, and 95% confidence
15 k = 2,264, The desired tolerance interval is

G- k.T+ k) or [13.71 — (2.264)3.55,13.71 + (2.264)3.55]

which reduces to (5.67, 21.74). We can be 95% confident that at least 90% of the values of load at fail-
ure for this particular alloy lie between 5.67 and 21.74 megapascals.

14



