STATE UNIVERSITY OF NEW YORK New Paltz, New York.

General Physics 2 Second Exam Instructor: Dr. T. Biswas October 31, 2024.

Solutions

Constants and Formulas

$$\mu_0 = 4\pi \times 10^{-7} \, Tm/A.$$

$$V = iR$$

$$q = CV$$

$$C = C_1 + C_2$$

$$1/C = 1/C_1 + 1/C_2$$

$$\vec{\mathbf{F}} = i\vec{\mathbf{L}} \times \vec{\mathbf{B}}$$

$$d\vec{\mathbf{B}} = \frac{\mu_0 i}{4\pi r^2} d\vec{\mathbf{s}} \times \hat{\mathbf{r}}$$

$$= \frac{\mu_0 i}{4\pi r^3} d\vec{\mathbf{s}} \times \vec{\mathbf{r}}$$

Name_____

Problem I

The above circuit has components of the following values: $R_1=4.0~\Omega,~R_2=5.0~\Omega,~\mathcal{E}_1=60~\mathrm{V},~\mathcal{E}_2=20~\mathrm{V},~\mathrm{and}~\mathcal{E}_3=50~\mathrm{V}.$

Solution

Question 1

The outer boundary loop gives

$$\mathcal{E}_1 - i_1 R_1 - \mathcal{E}_3 = 0.$$

Hence,

$$i_1 = \frac{\mathcal{E}_1 - \mathcal{E}_3}{R_1} = 2.5 \text{ A}$$

Question 2

The lower rectangular loop gives

$$-i_2R_2 + \mathcal{E}_2 - \mathcal{E}_3 = 0.$$

Hence,

$$i_2 = \frac{\mathcal{E}_2 - \mathcal{E}_3}{R_2} = -6.0 \text{ A}$$

Question 3

The junction equation gives

$$i_1 + i_2 + i_3 = 0$$

Hence,

$$i_3 = -i_1 - i_2 = 3.5 \text{ A}$$

Question 4

Starting at a, going down and then going right through \mathcal{E}_3 to b gives

$$V_a + \mathcal{E}_3 = V_b$$

Hence,

$$V_b - V_a = \mathcal{E}_3 = 50 \text{ V}$$

Problem II

Four capacitors are connected as shown above. Each capacitor has a capacitance of $4.0\mu F$. A voltage of 10V is applied between the points a and b.

Question 7

The voltage across C_4 is 10V. Hence the charge in it is

$$q_4 = C_4 V = 4.0 \times 10 = 40 \mu C.$$

Solution

Question 5

 C_1 , and C_2 are in series. So their combination has capacitance C_s given by

$$1/C_s = 1/C_1 + 1/C_2 = 1/2$$

Hence,

$$C_s = 2.0 \mu F$$

 C_s , C_3 and C_4 are in parallel. Hence, the net capacitance C is given by

$$C = C_s + C_3 + C_4 = 10.0 \mu F$$

Question 6

The full voltage of 10V is across the capacitance C_s . The charge in the series combination is the same as the charge in each member of the combination. Hence,

$$q_1 = q_s = C_s V = 2.0 \times 10 = 20 \mu C$$

Problem III

The figure above shows a magnetic field $\vec{\bf B}$ directed out of the page. Its magnitude is 3.0T. A piece of wire is placed in this magnetic field in the plane of the page as shown. The top segment has a length $a=4.0{\rm m}$ and the left segment has a length $b=2.0{\rm m}$. The distance between the ends of the wire is $c=2.5{\rm m}$ A current of $i=5.0{\rm A}$ is flowing in the wire in the direction shown.

Question 9

The right hand rule gives the direction of \vec{F} to be to the right. The magnitude is

$$F = i|\vec{\mathbf{L}} \times \vec{\mathbf{B}}| = ibB \sin 90^{\circ} = 30 \text{ N}$$

Question 10

Here, the vector $\vec{\mathbf{L}}$ is the one joining the endpoints in the direction of the current. So, the right hand rule gives the direction of $\vec{\mathbf{F}}$ to be towards the bottom of the page. The magnitude is

$$F = i|\vec{\mathbf{L}} \times \vec{\mathbf{B}}| = icB \sin 90^{\circ} = 37.5 \text{ N}$$

Solution

Question 8

The force is given by

$$\vec{\mathbf{F}} = i\vec{\mathbf{L}} \times \vec{\mathbf{B}}$$

The right hand rule gives the direction of \vec{F} to be towards the bottom of the page. The magnitude is

$$F = i|\vec{\mathbf{L}} \times \vec{\mathbf{B}}| = iaB\sin 90^{\circ} = 60 \text{ N}$$

Problem IV

Question 12

A long thin wire is bent in the shape shown above. Assume it extends to infinity in the positive y and positive x directions as shown. A current i flows in the wire as shown. The point marked P is at a distance R along the negative x axis as shown.

Using the right-hand-rule, the magnetic field direction due to the element of wire $d\vec{s}$ is found to be out of the page. As this direction is the same for all elements of wire, integrating the magnitude of the field will give the total field.

$$dB = \frac{\mu_0 i}{4\pi r^2} ds \sin \theta$$

where $\sin \theta = R/r$. Hence,

$$B = \int dB = \frac{\mu_0 iR}{4\pi} \int \frac{ds}{r^3}$$

Choosing the bottom end of the wire as the origin of the y axis and the distance of the line element from the origin to be y, it follows that ds = dy and $r = (y^2 + R^2)^{1/2}$. Hence,

$$B = \frac{\mu_0 iR}{4\pi} \int_0^\infty \frac{dy}{(y^2 + R^2)^{3/2}}$$

Solution

Biot-Savart law gives

$$d\vec{\mathbf{B}} = \frac{\mu_0 i}{4\pi r^2} d\vec{\mathbf{s}} \times \hat{\mathbf{r}}$$

Question 11

For this part, the angle between $d\vec{s}$ and \hat{r} is zero. So, $d\vec{s} \times \hat{r} = 0$. Hence, the magnetic field due to this part is zero.

Question 13

Direction is out of the page as seen in the solution of question 12.