Solutions

Chapter 2
Problem 6
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v= (22 + 2+ 22 v=7%/e
Hence,
g 1 /J(zi—:nfc—yy)da,
dmeg J (22 4 y2 + 22)3/2

In cylindrical polar coordinates (p, ¢, z), x = pcos ¢,y = psin¢ and da’ = pdp d¢. Hence,

o [fpcosgpdpdd = [Fpsingpdpdg o [* zpdpdd
=4 s e v ] e

47T€0 (p? + 22) T(p2 £ 22)3/2

The x and the y components vanish as

/Ozwcos¢d¢: /O%sirubdqﬁzo.

Hence,
E_O’ZZ /2”/ pdpdp | 2mozz /R pdp o2z [1 1
 d7eg (P2 +22)3/2|  dmeo |Jo (p2+22)3/2| 2 Lz (R%4 22)1/2
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Problem 7

!
N2

r = 2Z.
Converting rectangular to spherical polar coordinates on the surface of the sphere gives,
¥’ = Rsinf cos ¢x + Rsinfsin ¢y + R cos 0z,
2=7—7 = —Rsinfcos¢px — Rsinfsin ¢y + (z — Rcos0)z.
Hence,
2= (R?sin® 0 cos® ¢ + R?sin® 0sin® ¢ + 22 + R? cos> § — 2Rz cos 0)'/? = (R? + 22 — 2Rz cos 0)/2,

and,
K ié _ —Rsinfcos ¢x — Rsinfsin ¢y + (2 — Rcos0)z
2 B (R? + 22 — 2Rz cos 0)3/2

Using this in the general formula for E gives,

E:

o /2”/7r [—Rsinﬁcosgﬁf:— Rsinfsin ¢y + (z — Rcos )z
o Jo

R*sinfdfd
(R2 + 22 — 2Rz cos 0)3/2 } o ¢

4meqg

using the spherical polar form da’ = R?sinfdf d¢. Computing the ¢ integral makes the z and y
components vanish and then,

E =

21 R?0% /7r { (z — Rcos®)
0o L

inddo.
R?2 + 22 — 2Rz cos 9)3/2} St

4dmeg
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Various integration tricks can be used to compute this integral. One of them comes from the
observation that,

_d 1 B (z — Rcos®)
dz (R? 4 22 — 2Rzcos0)1/2  (R2 + 22 — 2Rz cos 0)3/2
This gives,
— R0z d (™ 1
E=——— in 6 df.
2¢0 dz /0 {(R2 + 22 —2Rzcos (9)1/2} s
Substituting u = (R? + 22 — 2Rz cos ) allows the computation of this integral. It amounts to
q Rloz1 d 1, o, o 1/2[™
E=- 2 Rds L (R*+ 2= — 2Rz cosf) ‘0}
_ Roz d [1 2 2 1/2 2 2 1/2
= 260612L[(R + 22— 2R2)Y2 — (R + 22 + 2Rz) H

= o2 L m=ar - )]

At this stage, it is important to note that the square root is always the positive one. So,

R—2z ifR> 2
_ 2 )
(R —2) _{Z—R if R< 2.

Hence, for z < R (inside the sphere),

E =

Roz d [1
oZ [ }:0’

— |=[-2
2¢g dz z[ d

and for z > R (outside the sphere),

E =

Roz d [1 [2R} _ R’02 _ 4nR0z qz

20 dz |z €22  4dmegz? - dmegz?’
as 4mR? is the surface area of the sphere and the total charge is ¢ = 47 R?0. This shows the
unexpected but well-known result that the electric field inside the sphere is zero and outside the

sphere the same as if the total charge were a point charge at the center.

Problem 8

For points outside the solid sphere, consider the sphere to be made up of thin concentric shells.
Each shell contributes an electric field that is due to its charge as if it were at the center. So, the
net electric field would be as if the total charge ¢ were all at the center. Hence,

qz
dmegz?’

E — for z > R.

For a point at some distance z such that z < R, we can still visualize the sphere as composed of
infinitesimally thin spherical shells. The shells that have radii greater than z do not contribute



to the electric field as seen in problem 7. The shells of radii less than z produce electric fields as
if their charges were concentrated at the center. So the total charge of these shells placed at the
center will produce the electric field at a distance z from the center. The total charge of these
shells is ¢ = p(4723/3) as their total volume is 4723/3. So, using the result of problem 7,

B dz  pnz3/3)z  pez

Amegz?  dmepz? 3e

As the total charge on the full sphere can be written as ¢ = p(47R3/3), p = 3q/(47R?). Inserting
this in the above equation gives,

= qzZ
E=——, forz<R.
AmegR3’
Problem 17
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Charge on inner cylinder of length h is
¢ = pra’h.
Charge on outer cylinder of length A is
qo = o(2mb)h.

The net charge being zero means

¢ + qo = pra*h + o(21b)h = 0



So,
pa’
20
For the cylindrical Gaussian surfaces shown in the figure, the flux integral is as follows.

fﬁ-da: E-da+/ B.di+ E.da

top bottom curve
The first two integrals vanish as the directions of E and dA are perpendicular. The integral over
the curved part gives

]{E-dé‘:/ E-da:/ Edacos0® = E da = E27sh.
curve curve curve

part i

Using the surface shown in the figure for this part, the enclosed charge is
Q. = prs’h.
Hence, from Gauss’ law
E2rsh = Q./ey = prs*h/eq,

and then,
p="
2¢€0

part ii

Using the surface shown in the figure for this part, the enclosed charge is
Qe = pma’h.
Hence, from Gauss’ law
E27sh = Qc/ep = pﬂazh/eo,
and then,

_ pa?
2608

part iii

Using the surface shown in the figure for this part, the enclosed charge is
pa’
Qe = pra’h + o(27b)h = pra’h + 3y (2mb)h = 0.
Hence, from Gauss’ law

E271sh = Q¢/ep = 0,

and then,
E=0.



Problem 18
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The figure above shows a cross section of the charge distribution. From symmetry, it is seen that
the electric field must be perpendicular to the midway plane — upwards above it and downwards
below it. A convenient choice of Gaussian surface is a cylinder as shown. The electric field E is
perpendicular to the direction of da on the curved surface. Hence,

/ E.-da=0.
curve

On the top and bottom surfaces, the angle between E and d& is zero. Hence,

/ E-da:/ E-dazE/da:Ea,
Jtop bottom

where a is the area of cross-section of the cylinder. This gives,
fEdi- [ Eedi+ | = Eodi+ B.dd = 2Ea.
top bottom curve

The cylinder on the left is for points such that |y| > d. The enclosed charge is the charge in the
full thickness of the slab. So,

Qenc = PG(Qd) .

So, from Gauss’ law,
2Fa = pa(2d)/ep.



Then,
E = pd/e.

The cylinder on the right is for points such that |y| < d. The enclosed charge is the charge

in a thickness of 2|y|. So,
Qenc = pa(zly‘)
So, from Gauss’ law,
2Ba = pa(2ly))/c.
Then,
E = ply|/eo.
Problem 22
The electric field is given by,
_ 1 gqrr
E= — if
Tres IO if r < R,

L
—~ % >R

E=
dmeg 12

For points outside, the electric field is given by the r > R condition all along the integration

path. So,
q

r, o oo 1 T gr 1 q
— _— d /3 — / 7d ! = .
/ / 2 (dr's) 4Ameg Joo T2 " dmegr

E-dl=-
dmeg Joo T

For points inside, the electric field is given by the » > R condition from co to R and by the
r < R condition from R to r along the integration path. So, the integral must be split into two

parts as follows.
1 T qr't
L (@)

V(r) /FE dl ! /qu (dr'#)
r)=— cdl = — = - (dr'r) — —
o ATey Joo T2 dmey Jr R3
R T
q L, q / I, q q 2 2
- dr - 2 dr’ = — 2—R%/2
4d1eg /oo 2 dmegR3 JR rar degR  4megR3 (r*/ /2)
_ 3¢ qr?
-~ 8megR  8megR3
Problem 23
For an infinitely long line charge with line charge density A, the electric field is
Eo_2 &
2megs
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Choosing sq as a reference point and doing the integral for V' along a radial line gives

F_o A 5§ A s ds’ A
V(s):—/ E.dl = /E-(ds'é):— & (In 50 — In 5).

10 2meg Jsy S 2meg Jsy S  27e

Note that sy can be any constant as long as it is not oc.

Problem 26
Part a
_q q
dmegry  Amegra’
where
T =To = 22 + (d/2)2
Hence,

2q

- dmegy/z% + (d/2)?

As the x and y coordinates have been chosen as zero at the target point, derivatives with
respect to them cannot be computed. Hence, only the z component of the electric field can be
computed form the above expression for V.

Vv

ov_ o
Oz dmeg(22 + (d/2)2)3/2°

E.=-

If one of the two charges is replaced by a —¢q charge, it is easily seen that
V=0.

This gives the z component of the electric field to be zero. As argued before, the 2 and y components
cannot be computed from this expression for V as it is assumed that x = 0 and y = 0.

Part b

V= —
dmey J-p (22 + 22)1/2 dre

1 /L Az A In V22 4+ L2+ L
V2ALE-L)

The z component of the electric field is

v 2L
0z  dmegz/ 22 + L2
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Part ¢

v — o / da
4 Va4 y2 4 22

In cylindrical polar coordinates (p, ¢, z), = pcos ¢,y = psin¢ and da = pdpd¢. Hence,

27 R R
V:40 / pdpdgp  2mo pdp a( %R2+22_2)‘
Teo Jo

0 V2422 dme o 2422 26

The z component of the electric field is

E__W_U(l_z)
T 0z 2 VEZ+22)

Problem 29

r=zz.

Converting rectangular to spherical polar coordinates for the volume element shown,
¥’ = rsinf cos ¢X + 7 sin § sin ¢y + r cos 0z,

2=7—7' = —rsinfcos ¢px — rsinfsin ¢y + (z — rcos d)z.



Hence,

25in? 0 cos® ¢ + r2 sin? Osin® ¢ + 2% + 12 cos? 0 — 2rz cos 0)/? = (r? 4 2% — 2rz cos 0)/2,

Vo 1 /pdT’ B / /2”/ r2 sin 6 df do dr
e v 4meg (r?2 + 22 — 2rzcos 0)/2

The ¢ integral gives

2= (r

2
do = 2.

Using the substitution v = (2 + 2% — 27z cos 0)1/2, the 6 integral gives

Q sin 6 df 1
_ 2 _ )2
/0 (r2 4+ 22 — 2rzcosO)1/2 1z [\/(T +2) \/(r 2) ]

{ 2/r ifr >z,

2/z ifr<z.

Hence,

dmp | [# ridr R p2(y ) 2 2 P p2 2
V_47T60 |:/0 2 +_/Z r —%[Z /3+R/2_Z/2]_%[R/2—Z/6]
As the total charge is ¢ = p(47R3/3),

3q
~ 4r e 3

3q q7>

R?/2 — 2%/6 — .
[#5/2 = 27/6] = SmegR  8megR3

Problem 35

Part a

As p = 0 outside the sphere, the integral needs to be done only inside the sphere. The potential V'
inside the sphere is found to be (problem 21),

3¢ g
~ 8megR  8megR3’

2 2
_F / / / [87‘(60]% 87;]67;]__{3] r?sin 6 d0 do dr,

—2ﬂ/ 0| ogy - 4B _ 3¢
p 87r60R T Bre R P 5es ~ 20meoR’

where the fact that ¢ = p(47R3/3) is used.

if r < R.
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Part b

B 4w3§R3 if r <R,
) L5 ifr>R.
dmeqr?
Hence,
€0 [e%s) 27 s 00 R o]
wW=-= / / / E?r?sin6df de¢ dr = 2re / E?*r? dr = 2reg / E*r? dr + / E*r2dr
2Jo Jo Jo 0 0 R
R 2 o) 2 2 2
qr 9 q 9 q 1 1 } 3q
eo [/0 <47T€0R3> " T+/}g <47T607‘2) " r] 8meg [5R + R 20meg R
Part ¢

Let a > R. Then, the volume integral part is the same as above except for the upper limit of

integration being a rather than co. So,

R 2 a 2 11 1 1
S Sy P AT
/v g Wl o \4meoR3 rar r \4megr? rar 4med

N + J—
SR R a
The surface is a sphere of radius a (do not confuse a with the vector da which is a surface area

clement). d& is parallel to E and hence,
E - da = E|da| = Fa®sin 0 df d¢

So, the surface integral is

. 27 pm
j{VE-dzz:/ / V Ea?sin 0 do do,
S 0 0

As V and F depend only on a, the radial distance,
g ¢

21 T
VE-d*:VE2/ / in0dfde = VEad(4r) = dra®—2 —
]{9 * ¢ o Jo S ¢ @’ (4r) e 4repa dmega®  4dmeda

Then it can be seen that

2 2 2

€0 2 = €[ ¢q 1 1 1} q 3q
W= _— E“d %VE-d == |—=+=-= =
2 (/v T S a) 2 (47‘(’6(2) [SR + R a * 4reda 20meo R

Problem 36

At the stage where the sphere has been built to a radius of r, the potential at the surface is

/

_ 4
dmeor

V(r)
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where ¢’ is the total charge of the sphere at that stage, that is
q = p(4mr®/3)

Hence,

_planr3) _pr?
 dmeer 3eo
The thin shell of thickness dr will have a charge of

V(r)

dq' = pdr = p(4mridr)

The work done to bring that charge to the surface will be

2
dW =V dq = gip(zm?dr) =

€0 3€q

4 2
P rtdr

Integrating this from 0 to R gives the total energy.

R 4 2 4 2R5
W:/dW:/ P A gy = 2P
0 3€o 15¢g

Then using the fact that ¢ = p(47R3/3), we get

3q2
l/ ‘/ pr— .
20meg R
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